Citation Hunt

Das unten stehende Wikipedia-Snippet wird von keiner verlässlichen Quelle unterstützt. Kannst du eine finden?

Klicke auf Verstanden!, um zu Wikipedia zu gehen und das Snippet zu reparieren, oder Nächstes!, um ein anderes zu sehen. Viel Glück!

In Seite Hyperventilation:

"

Eine überhöhte Luftwechselrate führt kaum zur Mehraufnahme von Sauerstoff in den Körper, da die Sättigung des Blutes mit Sauerstoff schon bei normaler Atmung etwa 97 % beträgt. Allerdings kommt es bei Hyperventilation zur vermehrten Abatmung von Kohlenstoffdioxid, welches ständig aus dem Blut in die Atemluft diffundiert. Dadurch kann der Anteil des Kohlenstoffdioxids im Blut unter den physiologischen Wert fallen, was zu einer Störung des Säure-Basen-Haushalts führt.

Kohlenstoffdioxid (CO2) ist im Blut größtenteils als Kohlensäure (H2CO3) gebunden. Die im Blut gelöste Kohlensäure reagiert in Abhängigkeit von den Umständen entweder zu freiem Kohlenstoffdioxid oder zu Hydrogencarbonat (HCO3). Bei der Umwandlung von Kohlensäure in Kohlendioxid wird ein H2O (Wasser) abgespalten. Bei der Umwandlung von Kohlensäure in Hydrogencarbonat wirkt die Säure als Protonendonator. Das abgegebene Proton (H+) verbindet sich mit dem umgebenden Wasser (H2O) zu Oxonium (H3O+).

Wenn durch eine vertiefte bzw. beschleunigte Atmung zu viel Kohlendioxid mit der Atemluft abgegeben wird, verschiebt sich das Reaktionsgleichgewicht. Als Folge der Stoffmengenänderung reagiert H2CO3 so lange vermehrt zu CO2, bis sich ein neues Gleichgewicht einstellt. Dabei kommt es zwangsläufig zu einer Abnahme der Konzentration von HCO3 und H3O+. Je weniger H3O+ sich im Blut befindet, desto höher ist dessen pH-Wert. Infolge der Hyperventilation wird so zunehmend eine respiratorische Alkalose erzeugt, was ein potentiell lebensbedrohlicher Zustand ist.

Zum Verständnis der Folgen der Hyperventilation ist eine grundlegende Kenntnis über den Zustand der Hirngefäße in Abhängigkeit von der CO2-Konzentration im Blut erforderlich: Eine hohe CO2-Konzentration geht im Allgemeinen mit einer niedrigen O2-Konzentration einher. In diesem Fall erweitern sich die Gefäße des Gehirns, um eine adäquate Versorgung der Nervenzellen mit Sauerstoff zu gewährleisten. Bei der Hyperventilation tritt nun der umgekehrte Fall ein: Die abnorm geringe CO2-Konzentration führt zu einer Konstriktion der Hirngefäße. Dies führt zu der paradoxen Situation, dass eine vermehrte Atemtätigkeit trotz maximaler Sauerstoffsättigung zu einer Unterversorgung des Gehirns mit Sauerstoff führt.

Durch die pH-Verschiebung kommt es außerdem zu Störungen des Elektrolythaushaltes, insbesondere zu einer relativen Hypokalziämie (relativ, weil nicht die Konzentration des Calciums abnimmt, sondern der Anteil des frei gelösten ionisierten Calciums am Gesamt-Calcium im Blut) durch die vermehrte Bindung an negativ geladene Plasmaproteine. Dies ist dadurch zu erklären, dass Plasmaproteine bei erhöhten Blut-pH-Werten verstärkt Protonen an das Blut abgeben und damit eine negativ geladene Bindungsstelle frei wird. Calcium hat eine membranstabilisierende Wirkung. Sinkt nun die relative Konzentration, führt dies zu einer Übererregbarkeit des Nervensystems und der Muskulatur und damit zu den typischen neuromuskulären Symptomen (z. B. Krämpfe, „Pfötchenstellung“).